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Received 3 November 1988 

Abstract. By using the Wronskian representation of the solutions of the bilinear K P  
hierarchy, a connection between Hirota derivatives and supersymmetric polynomials is 
brought to light. This correspondence is used in order to give an alternative construction 
of the hierarchy. 

1. Introduction 

The most widely studied soliton equation in (2+1) dimensions is the Kadomtsev- 
Petviashvili ( KP) equation (Kadomtsev and  Petviashvili 1970). These investigations 
include the inverse scattering transform in the plane (for example Manakov 1981, 
Ablowitz et a1 1983) and ‘bilocal’ recursion operators (Santini and  Fokas 1986) as well 
as applications of Hirota’s direct method for obtaining soliton and lump solutions 
(Satsuma 1976, Satsuma and Ablowitz 1979). 

The T function approach (Sato 1981, Jimbo and  Miwa 1983) has also been important 
in bringing to light the algebraic properties of the KP equation. In  this theory one may 
obtain a hierarchy of Hirota equations in infinitely many independent variables satisfied 
by the same solutions, and  called the (bilinear) K P  hierarchy, of which the K P  equation 
is the base member. The aim of this paper is to show how this hierarchy may be 
constructed directly, using techniques from symmetric function theory. Here we prove 
a slightly modified version of an earlier conjecture (Nimmo 1988a). 

Underlying this construction is the representation of solutions of the K P  hierarchy 
as Wronskian determinants (Freeman and Nimmo 1983). It will turn out that, if one 
considers solutions represented in this way, then derivatives correspond to certain 
power-sum symmetric functions and  Hirota derivatives to power-sum supersymmetric 
functions. This relationship is the key to the construction. 

The construction may also be cast in terms of an  infinite family of operators bearing 
a tantalising resemblance to the bilocal recursion operators of the more usual- 
evolution equation-form of the K P  hierarchy. It has not, however, been possible to 
make this connection at all concrete. 

2. The KP equation 

The K P  equation 

(U, + 6uu, + U,,,), -t 3uYy = 0 (1) 
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is transformed to the Hirota 

U = 2 7 l o g  r 
a' 

ax 

and we have 

form by the change of variable 

(D:+ D,D, + 3 D t , ) r *  r = 0 

where the Hirota derivatives are defined by 

In order to achieve a uniform notation we introduce an  infinite sequence of indepen- 
dent variables x,, k E N, in which we have x, = x, x2 = y and x3 = - i t .  Furthermore, 
we introduce partition notation for derivatives and  Hirota derivatives; 

ap 
ax,, . . . axAp 

a, = 

DA O x , ,  ' * * D~A,,  
for any partition A = ( A , ,  . . . , A p ) .  We say that a Hirota derivative D, is of weight k 
if A is a partition of the integer k. 

Throughout this paper we will use the notation and ideas of symmetric functions. 
For readers not familiar with this theory the book by Macdonald (1979) is particularly 
recommended. In this notation the K P  equation has the Hirota form 

(D(14) + 3 D122) - 4D13, )) r r = 0 (4) 

where r is now taken to be a function of the sequence of variables x = (x, , x2,  x3, , , , ). 
One may show that the Wronskian determinant 

(5) T = W(cp,, . . . , c p N )  = det(a'-'cp,) 

with a = a/ax,, satisfies (4) provided, for j = 1, . . . , N, cpj(x) satisfy 

(Freeman and  Nimmo 1983). This result is achieved by observing that (4), with T as 
in (5), is the expansion by N x N minors of the determinant 

where p")= (a'/axj)(cp,, . . . , c p N ) '  and 0 the zero matrix of appropriate size. 
We wish to identify all Hirota equations 

for constants a,, that are satisfied by the Wronskian ( 5 )  for all N. These equations 
will constitute the K P  hierarchy. This question has been addressed before by Sat0 
(1981) where it was shown that these equations correspond to Plucker relations on a n  
infinite-dimensional Grassmann manifold, of which (7) is an example. The lowest- 
weight equations are listed in Jimbo and Miwa (1983). The intention here is to describe 
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TiN', 

0 0 . . .  1 

Ti  N -1). a &' - q2 ( x ) 
= W ( W o , ( x ) ,  . ' .  , a q N ( x ) )  = 

c p z ( x )  . w 2 ( x )  ' ' 

q N ( X )  qN(x) ' ' a N - ' q N ( x )  

3. Supersymmetric polynomials and the KP hierarchy 

First of all we will show how derivatives and  Hirota derivatives correspond to certain 
symmetric functions when acting on the Wronskian determinant (5).  Rewrite (5) as 

(9) 

where we introduce a copy, x , ,  of the infinite sequence of independent variables x for 
each function qI,  and let a ,  denote the corresponding copy of a. In (9) V(a , ,  . . . , a,) 
denotes the Vandermonde determinant of its arguments. Since the q, satisfy ( 6 ) ,  it 
may be shown that 

N 

a A T = P h ( a l  9 .  . . 3 a &  ) v ( a l  9 .  . . 9 fl q ! ( x t ) l  (10) 
! = I  x i =  = x \ = x  

where 

is the power-sum symmetric function for the partition A = ( A  
extension of this idea shows that 

0 ~ 7 .  ~ = t j h ( a , ,  . . . , a w ;  Z l , .  . . , Z N ) V ( a l , .  . . , a , v ) ~ ( Z l , .  . . ,aN 

l = I  I,= = r , = f , =  = i , = x  

where 

(11) 

, . . . , A p ) .  An obvious 
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for the partition A = ( A l , .  . . , Ap) .  The polynomials j A  were first introduced by 
Littlewood (1950) and called generalised power-sum symmetric functions. More 
recently they have been used in the representation theory of supergroups where they 
are called power-sum supersymmetric functions (see, for example, King 1983). Now 
we shall consider the properties of such polynomials in some detail before returning 
to the current consideration. 

A polynomial f (u;  U), where U and U are sets of independent variables U,, . . . , uN 
and u l ,  . . . , uM is said to be doubly symmetric i f f  is invariant under permutations of 
U and U. Further, a doubly symmetric polynomial f( U ;  U )  is said to be supersymmetric 
if, for any i = l ,  ..., N and j = 1 ,  . . . ,  M, 

f ( u ;  u)I.,=,I=, is independent of z. (13)  

It has been shown (Scheunert 1982, Stembridge 1985) that a polynomial f ( u ;  U )  is 
supersymmetric iff 

for some constants c,, where the sum is over all partitions. We shall use this result in 
order to utilise the criterion (13) as a means of testing whether a polynomial is a linear 
combination of power-sum supersymmetric functions. We shall only be interested in 
the case N = M here. 

Define the 2 N  x 2 N  determinants: 

where 
/ 1  z1 . . .  Z k - P - l  , Z P p P  . . .  

is an N x k matrix, p is the partition ( p1 , . . . , p p )  and OS m s N. Here, and in all that 
follows, we shall assume that N is sufficiently large for definitions to be meaningful 
and  labellings of columns of determinants to make sense; here, for example, we require 
that N is such that N - m > [ ( A )  and N + m > l ( p ) ,  i.e. N > max{l(A) + m, l ( ~ )  - m } ,  
where / ( A )  is the number of parts in the partition A. 

We use the above determinants to define a family of doubly symmetric polynomials: 

where V ( z )  = fli,j (zi - 2,) is the Vandermonde determinant. This definition is very 
similar to the usual representation of a Schur function as the ratio of determinants 
and it is important to note that the ratio in (16)  is a polynomial since the numerator 
vanishes when any pair of the ui or vi are identified, and hence has V ( u )  V (  U )  as a 
factor. In general these doubly symmetric polynomials are not supersymmetric but 
one may prove the following result (see the appendix). 

Theorem. For sufficiently large N, the doubly symmetric polynomials 

E,"(u;  U)= ( - l ) l ~ ~ c ; l P s ~ P L . ( u ;  U )  ( m 2 0 )  
P, P 
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where the CL,, are constants defined in (A4), are supersymmetric. Hence for some 
constants a,, depending on m and A, 

E r ( u ;  u ) = C a , j j , ( u ;  U). 
U 

It remains to interpret this result in the context of Hirota derivatives and the K P  

hierarchy. Consider the determinants 

This leads to a corollary to the theorem: 

when T is the Wronskian given in ( 5 ) .  For m > 0, the determinants 2z,p are zero and 
so the ay, for any partition A and any m > 0, are Hirota equations satisfied by the 
Wronskian ( 5 ) .  

It is possible to restate this result in terms of a family of linear operators ! x k  ( k  E N), 
defined by 

which is reminiscent of the definition of Hirota derivatives. In fact, for m = 0 and 
p = p = ( ), this coincides precisely with the definition of D,, since 

We also define !HA, for any partition A, in an obvious way. By using the relationship 
between power sums and Schur functions (cf (A2)) we have, for any partition p and 
m>0,  

(22)  
which is a Hirota equation satisfied by the Wronskian 7. 

Since 2;11.( . l (x;  x)  ( m  > O )  is a Hirota equation of homogeneous weight m 2 ,  this 
construction generates P( k - m') Hirota equations of weight k, where P ( n )  is the 
number of partitions of the integer n. We use the convention P( n )  = 0 for n < 0. 

%,(&; Y )  = T ( X ) T ( Y ) .  

!I , (8 ;1)) = !H , ( 2 ;1),, . ,( x; x) ) = x̂ ,@ I: = 0 
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For m = 1, this corresponds exactly with the result of Sat0 (1981) and  the construc- 
tion gives the whole K P  hierarchy including the trivial, odd, Hirota equations such as 
the base member 

4: , = D c l ) ~ * ~ = O .  

If one takes m = 2 ,  however, the base member is the weight-4 K P  equation (4), in 
the current notation 

6; , = a (  Dc14)+3D1221 -40 ( , ,  ) ) T *  T = 0. 

The next members of the hierarchy are, at weight 5, 

!x( i )(6: 1) = @ t i  1 = f (  D(2i3) 2 0 ~ 1  - 3 D(41)) 7 * T = 0 

and, at weight 6,  

8 2 )  (6 f 1 = 6 ?2) - 4 :I 1 = 8( 01 i b  1 -I- 1001  3 I 3 ,  - 20 0( 3> + 45 D(42 - 36 0( 5 I ) 

%(12) (@:  1) = @ ; 2 ) + @ : 1 1 )  = - ~ ( ~ ~ i ~ , - 4 5 0 ( 2 2 , ~ , - 2 0 0 ( 3 i ) l - 8 0 ~ ~ ~ ? ) +  1440(,1,). 

The number of equations of weight k generated in this case is P (  k - 4) and for weights 
4-8 inclusive these equations are precisely the non-trivial, even order, members of the 
hierarchy. For k 2 9 the construction gives equations with terms of both odd and even 
order. These equations, although themselves linearly independent, become linearly 
dependent when one eliminates the trivial terms. 

In fact, the number of independent non-trivial equations of weight k is P (  k - 1) - 
Po( k ) ,  where Po( n )  is the number of partitions of n into an odd number of parts. This 
is consistent with the fact that, for 1 < k < 9, P( k - 1) - Po( k )  = P( k - 4), but for k 2 9 
P( k - 1) - Po( k )  < P( k - 4). More details and examples of the construction of this 
non-trivial hierarchy are given in Nimmo (1988a). 

4. Conclusions 

We have given an alternative construction of the K P  hierarchy using symmetric function 
techniques. As a consequence of this we have brought to light a connection between 
Hirota derivatives and power-sum supersymmetric functions. It would be interesting 
to see if any of the theory of the K P  and other hierarchies could be utilised in the 
representation theory where these functions arise. 

This type of construction through the recursion-like operators ! X k  may be carried 
out in other settings. We have already considered elsewhere (Nimmo 1988a) two other 
hierarchies described in Jimbo and Miwa (1983); the modified K P  hierarchies where 
the construction is identical-the proofs given here need little modification-and the 
B K P  hierarchy where the solutions are not Wronskians but the same type of construction 
appears to work. 

The higher members of the K P  hierarchy have no direct relevance to the study of 
physically interesting non-linear evolution equations. In  the multicomponent K P  

hierarchies, however, this is not so. In these cases solutions take the form of multi- 
component Wronskians (Nimmo 1988b) and  results analagous to those given here may 
be used to obtain the Hirota equation satisfied by these functions. The equations of 
dispersive water waves and  their modifications (Kuperschmidt 1985, Antonowicz and  
Fordy 1988) have been studied as an  example of this technique (Freeman et al 1988). 
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Appendix 

Consider the supersymmetric Schur functions defined by 

s p ( u ;  u ) = c  Zhlxf;iA((U; U )  
A 

where xf; are group characters of the symmetric group and z, are such that 

u ) = c x ? s & ( u ;  
Ir 

(cf the relationship between the usual Schur functions and power-sum symmetric 
functions). Such functions may be expressed as quadratics in ordinary Schur functions 
using a result due to Littlewood (1950, p 115): 

('43) $(U; U )  = c ( - l ) ~ ~ ' c ~ , s p ( u ) s , ~ ( 0 )  
&* P 

where the ckp are the constants obtained using the Littlewood-Richardson rule in the 
product of Schur functions: 

spsp = c ; , s , .  (A41 
A 

Also 

A : , p ( u ;  U )  =det(M:(u)) . det(M;(u)) 

and so 

(A51 

We now investigate the expansion of the determinants A T w .  The following notation 
is used; if U denotes the set u l , .  . . .  uN then let U' denote U,, . . . .  u ~ - ~ .  Similarly, if 
M denotes an N x k matrix M '  denotes the ( N  - 1) x k matrix obtained by omitting 
the last row. Using this notation, we say thatf(u;  U )  is supersymmetric iff f(u', z; U', z) 
is z independent: 

I P I  A so 
i A ( u ;  U ) =  (-1) c p p  p,p ' (u ;  0). 

P,P 

ATp(u', z; U', z) 

I .  . . . . . . . . . . . .  . . . . .  . . . . . . . . .  . . . . . . .  

. . . . . . . . . . .  ..................... r . .  . . . . . . . .  
- A l + l  z.Uq-4+1..  . z L L ~  0 : . . . z  * . .  
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and expanding this determinant by its Nth,  and then 2Nth, rows gives 

for some constants p i , u ,  where the crucial property of this expansion is that these 
constants do not depend on the parameter m which governs the partitioning of A T p .  
Once again we have assumed here that N is sufficiently large that the above labelling 
of powers of z is meaningful. Dividing both sides of (A6) by V(u’ ,  z )  V(u‘, z) we get 

S T F ( U ’ ,  z; U’, 2)  = p;,us;”(u’;  U’) z k + O ( l )  (A71 
k * L  ( p,u ) 

and we see that we will be able to deduce that S T , ( u ;  U )  is supersymmetric if all of 
the constants pi,” vanish. This follows because the 0 ( 1 )  term in (A7) is z independent 
since the left-hand side is a polynomial, according to the discussion following (16), 
and V(u’ ,  z) V(u’, z )  is of order 2 N  - 2  in z. To prove the theorem in the main text 
we must show that 

E , “ ( u ;  U) = c (-l)’p’c;ps;,p(u; U )  ( m a 0 )  
P. P 

(cf (AS)) is supersymmetric. Using (A7) we have the expansion of the form 

and 

S * ( u ’ , z ;  u ’ , z ) =  a:,”so,,u(u‘; U’) z k + O ( l )  
k > I  ( p,u ) 

!here, as we described earlier, the constants a:,. are the same in both expressions. 
S,(U;  U )  is supersymmetric and so S,(U’,  2; U’, z )  must be independent of z. Hence all 
of the must be zero. Thus E,”(u’ ,  z; U’, z) is independent of z and so E T ( u ;  U )  
is supersymmetric. Thus the theorem is proved. 
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